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Abstract—Solving linear matrix inequality (LMI) is crucial
across diverse fields, and the emergence of zeroing neural
networks (ZNN) presents a novel solution for the time-varying
LMI (TV-LMI) challenge. However, the application of ZNN
to solve the time-varying complex-valued LMI (TVCV-LMI)
problem remains unexplored. Therefore, we introduce a novel
fuzzy-parameter ZNN (FP-ZNN) model in this study to tackle the
TVCV-LMI problem. With the introduction of fuzzy logic system
(FLS), the FP-ZNN model is able to adjust the fuzzy convergence
parameter (FCP) in a real-time manner, responding to any
change in the system error and achieving the best performance.
We also use an exponential activation function (EAF) in our
study, which makes the FP-ZNN model fixed-time stable. To
verify and illustrate the superior features of the elegant FP-
ZNN model, detailed theoretical analysis, together with numerical
experiments, are provided, and the results emphasize the fixed-
time stability and adaptiveness of the FP-ZNN model further. As
a novel approach, we provide an elegant solution to the TVCV-
LMI problem in this paper.

Index Terms—zeroing neural network, fuzzy logic system,
linear matrix inequality, complex number

I. INTRODUCTION

As a novel recurrent neural network, the zeroing neural
network (ZNN) has been used in many applications. For
example, Chen et al. proposed a disturbance suppression ZNN
and applied it in the robust synchronization of chaotic systems
[1]. Jia et al. applied the ZNN approach to solve the time-
variant QP problem [2]. In [3], an elegant ZNN model is
proposed by Dai et al., and they applied it in the dynamic
positioning problem [3]. ZNN models have also been used in
control applications, and Ma et al. proposed a novel ZNN
control strategy for mobile robot manipulators [4]. In [5],
Kovalnogov et al. proposed a novel image color restoration
algorithm based on ZNN. ZNN was first used in the field of
scientific computing to solve time-varying equations, and then
was extended to solve practical problems.
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ZNNs have proven to be a powerful tool in addressing
the time-varying linear matrix inequality (TV-LMI) problem.
Notably, there are various instances where ZNN has been
applied to tackle TV-LMI challenges. For instance, a noise-
tolerant ZNN [6] is designed specifically for addressing the
TV-LMI problem. In [7], a series of ZNN models featuring
novel activation functions is employed to solve the TV-LMI
problem within fixed-time constraints. Additionally, a varying-
parameter ZNN model is explored in [8] to effectively solve
the TV-LMI problem. While the complex-valued linear matrix
inequality (LMI) problem represents a distinct branch within
the broader LMI problems [9]-[11], there has been a notice-
able gap in research concerning the potential application of
ZNN models to solve the time-varying complex-valued LMI
(TVCV-LMI) problem.

There are various engineering challenges that involve dis-
cussions in the complex domain, such as digital signal process-
ing, classical control theory, and image processing. Complex
numbers play a crucial role in understanding the world. How-
ever, it is worth mentioning that most traditional ZNNs are
only capable of handling problems defined in the real domain.
To fill in the gaps, a variety of complex-valued ZNN models
are proposed recently [12]-[14]. In the literature, there are
mainly two kinds of complex-valued ZNN models. In the first
one, activation will be applied to the real and imaginary parts
of complex numbers [12], while in the second one, activation
is only applied to the magnitudes of complex numbers [13].
At present, the state-of-the-art complex ZNNs have only been
used in solving equations [14]. It is important to note that
there are very few reported ZNNs by researchers for solving
complex-valued inequalities.

With the development of technology, researchers have pro-
posed a series of variants of ZNN, including fixed-time conver-
gent ZNN [15], finite-time ZNN [16] and noise-tolerant ZNN



[17]. Among these elegant models, fuzzy-parameter ZNN (FP-
ZNN) represents an important area of research [18]-[20]. In
a traditional ZNN model, the convergence parameter won’t
change as the error changes. However, designing zeroing neu-
ral networks with variable convergence parameter to achieve
adaptive convergence is beneficial. As a result, researchers
have developed various FP-ZNN models which convergence
parameter can be adjusted as the error changes. FP-ZNN
models are widely used. For instance, Kong et al. introduced a
ZNN model with fuzzy parameters for the cooperative control
of multiple redundant manipulators [18]. In comparison to the
traditional ZNN model, the FP-ZNN model is more intelligent.
The convergence parameters in traditional ZNN models are
fixed while the fuzzy convergence parameters in FP-ZNN
models is adjustable. According to the system error, the fuzzy
convergence parameters will be adjusted in real time.

In this paper, we proposed a novel FP-ZNN model to solve
the TVCV-LMI problem in a fixed time. In Section II, we
introduce some necessary lemmas and definitions. Next, the
elegant FP-ZNN model is described in Section III. Together
with the theoretical analysis, which is shown in Section V,
the numerical experiments in Section VI verify the proposed
model further. Finally, we summarize our study in Section VII.

II. PRELIMINARIES

In this section, we will introduce the complex matrix theory
and the time-varying complex-valued linear matrix inequality
(TVCV-LMI) problem.

A. Complex analysis

As an extension of real numbers, complex numbers are
widely used in both science and engineering. In general, we
can express a complex number in the following form:

c=a+ bi. (D

Here, we call a the real part of the complex number c, b the
imaginary part of the complex number ¢, and i is the unit
imaginary number.

It is possible to represent complex numbers by real matrices,
and we describe such conversion as follows.

Definition 1 We can represent a complex number ¢ = a + bi
by a real matrix:

a —b
b a

o>
Il

2)

Here, we use ¢ to represent the corresponding real matrix of
the complex number c.

Definition 2 We can represent a complex matrix C = A+ Bi
by a real matrix:

A A -B
C= . 3)
B A

Here, we use C' to represent the corresponding real matrix of
the complex matrix C.

In the following discussion, we give some analytical prop-
erties of the above representation [21]. Supposing X is a com-
plex matrix, we will use X to denote the real representation
of X.

Lemma 1 For addition, supposing X,Y and S are complex
matrices, we can obtain:

S=X+YeS=X+Y. (4)

Lemma 2 For multiplication, supposing X,Y and P are
complex matrices, we can obtain:

P=MxN & P=DMxN. (5)

B. Time-Varying Complex-Valued Linear Matrix Inequalities

In this section, we introduce the time-varying complex-
valued linear matrix inequalities (TVCV-LMI) problem.

We denote A(t), B(t) and X(¢) by three time-varying
matrices, then the TVCV-LMI problem can be expressed as
follows:

A)X(t) < B(t). (6)

Here, X (t) is unknown.
Based on Lemma 2, (6) can also be expressed as follows:

A@®)X () < B(t). (7)
III. ZEROING NEURAL NETWORKS

In this part, the FP-ZNN model will be described in detail.
To help readers understand it in a better way, we will introduce
the traditional neural networks first.

A. Traditional Zeroing Neural Network

Based on (7), we can define the following residual function:
R(t) = A()X (t) — B(t). (8)

It is obvious that (8) cannot be served as an error function
since a solution A(t)X(t) — B(t) < 0 to the TVCV-LMI
problem doesn’t satisfy R(¢) = 0. But we can construct the
error function based on (8) and get:

&(t) = (max{0, R(1)})*/2. ©)

Here, the zero matrix O is in the same shape of R(t), and
max{-,-} is the max function. For a solution A(t)X(t) —
B(t) < 0 to the TVCV-LMI problem, the £(t) = 0 now.

There are a variety of design formulas for ZNN models, and
we choose the original ZNN formula to build the traditional
ZNN (TZNN) model:

E(t) = —ud(E(1)).

Here, ®(-) is an activation function, and we call the constant
1 the convergence parameter (CP).

Substituting (9) into (10), we obtain the final model cus-
tomized for the TVCV-LMI problem:

(10)

max{0, R(¢)}R(t) = —% max{0,R(1)}2,  (11)
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Fig. 1. The diagram of fuzzy logic system.

where 0 and R(t) are the zero matrix and the residual matrix
respectively.
It is obvious that (11) is equivalent to:

R(t) = —% max{0, R(t)}. (12)

In the following analysis, we will use the concept of settling-
time function, and the definition is as follows:

Definition 3 We define the settling-time function as T (X (0)),
which means that the error function E(t) is supposed to
converge in T(X(0)). Here, X (0) is the initial state.

B. Fuzzy-Parameter Zeroing Neural Network

Normally, the CP in a TZNN model (10) is a constant,
ant it won’t change as the error changes. In this section, we
designed a fuzzy-parameter zeroing neural network (FP-ZNN),
which CP is generated by the fuzzy logic system (FLS) and
can be adjusted according to the feedback of error, to solve
the TVCV-LMI problem.

In the following discussion, we describe the components of
FLS in detail.

1) Fuzzification is the process to transform scalar values
into fuzzy sets. Membership functions are essential in
representing fuzzy sets, and we will use the following
membership functions in our study:

a. Triangle function:

0 if y < p1,
YZPLif ) <y < po,
m(y) = e L PEEIEPR g
P3U i p, <y <
D5 —p2 P2 =Y < Pps
0 if y > ps.
Here, p1,p2 and p3 are parameters.
b. Gaussian function:
2
Yy—aq
miy) = esp(- L0 g
U5}

Here, exp(+) is the exponential function, ¢; and go
denote parameters.

Specifically, the triangular membership function and
the Gaussian membership function are used in the
fuzzification and defuzzification process respectively.
To visualize these membership functions, we plot
them in Fig. 2 and Fig. 3 respectively. In partic-
ular, we set the output range [O;, O,] of FCP as
[Ol7 Or] = [17 10]‘

2) Inference is the technique to get suitable output fuzzy
sets after an evaluation of the input fuzzy sets. Fuzzy
rules, which can be described through a series of IF-
THEN statements, will be used in the inference process.
Specifically, we use the following fuzzy rules in this
study:

Fy: if E=0, then ( =0,

Fy: if E=S5,then (=5,

F5: if E=1L, then ( = L.

Here, L, S and O are the fuzzy sets of large, small, and
zero values respectively, E' and ( represent the error and
FCP respectively.

With the fuzzy rules Fy, F5 F3 and the union operator
U, FF = Fy U Fy U F3 is defined to obtain ( = F o F,
where E is the fuzzy set input to FLS, and o denotes the
process of fuzzy inference.

3) Defuzzification is the process to transform fuzzy sets into
scalar values. To achieve defuzzification, the traditional
centroid method is used in this study, and it can be
expressed as:

- fg CREoF(C)dC
Je Reor(Q)dC
Here, Rgor(() = Rpor, ¥V REor, V REorss REor =

Re AN Rp. A and V are the minimum and maximum
operators respectively.

15)

A diagram of the FLS used in this study is presented in
Fig. 1. The fuzzification module converts crisp input values
into a series of fuzzy sets. The fuzzy inference engine accepts
these output fuzzy sets from the fuzzification module and then
generate suitable fuzzy sets according to the built-in fuzzy
rules. Finally, the defuzzification module will defuzzify these
fuzzy sets and output the final FCP.

With the FCP ((¢) and a activation function ®(-), the fuzzy-
parameter zeroing neural network (FP-ZNN) can be described
as follows:

E(t) = —C(HR(E()).

In this study, the activation function ®(-) used in the
proposed FA-ZNN model is specified as the following
exponential-power activation function (EAF):

(16)

®(x) = ay exp(|z|”)|z|' Psign(z)/p, (17)

where sign(z) denotes the sign function, a; > 0 and 0 < p <
1 are parameters.

In addition to EAF (17), the following activation functions
may also be used in this study:

1) Linear activation function (LAF):

®(z) = a1y, (13)
2) Power activation function (PAF):
D(y) = a1 |y|” sign(y), (19)
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Fig. 3. The Gaussian membership function.

3) Bi-power activation function (BAF):

D(y) = (a1 [y|” + a2 [y|")sign(y),
where a; > 0,a2 > 0,0 < p <1 and ¢ > 1 are parameters.

(20)

IV. THEORETICAL ANALYSIS
In this section, we will prove that the proposed FP-ZNN
model (16) is Lyapunov stable, fixed-time convergent.
A. Lyapunov Stability

Theorem 1 If FP-ZNN model (16) with EAF (17) is used
to solve the TVCV-LMI problem, then the system will be
Lyapunov stable.

Proof As stated before, we set the output range [0}, O,] of

FCP ((t) as [O;, O,] =[1, 10]. It is obvious that
E(t) = (max{0,R(t)})?/2 > 0,
C(t >0, =1,

) 1)
O(x) >0, Vz>0.

Therefore, for each element e;;(t) of the error matrix E(t),
we have:

3 oy ) >0 ife(t) #0
C(t)eij(t)gles;(t) = {: 0 ifey(t)=0 . (22)
We can define Lyapunov functions l;;(t) = E?JQ(t) for

each element e;;(t) of the error matrix £(t), then for i =
1...n, 5=1...m, we have:

Iij (t) = eij(£)éi; (¢),
= —((t)eij(t)p(eis(t)),
<0.

(23)

Here, ¢(x) is the activation function, and ((t) denotes the
FCP (16). From (16), we know é;;(t) = —((t)e;;(t).

It is clear that the system is Lyapunov stable based on
Lyapunov’s theorem.

B. Fixed-Time Convergence

Theorem 2 For FP-ZNN model (16) with any initial state
X (0), if EAF (17) is used, then the error will converge within:

1
a10;’

where ay > 0 is the predefined parameter in EAF (17), and
Oy is the minimum value of the FCP ((t).

T(X(0)) < 24)

Proof We can build g;;(t) = |e;;(t)| to obtain:

9i5 (t) = é45(t)sign(e; (1)),

= —((t)g(ei;(t))sign(es; (1)),
—a1¢(t) exp(lei; (£)[P)]es; (1) 7 /p,
< —ar0pexp(leg; (1)[7)ei; () /p,
< —a,0rexp(g?;(t)gi; P (t)/p
where a1 > 0 and 0 < p < 1 are predefined parameters, and

Oy is the minimum value of the FCP ((t).
By solving the inequality equation (25), we have

1~ exp(~g4(0))

(25)

T;;(X(0)) <

_1- exp(—\eij(0)|p)7 (26)
a10
1
< .
RCLY
It is obvious that for the error matrix £(t) as a whole, we
have:
T(X(0)) = max  {T},
i=1l..n,j=1...m
. 27)
< A
LY

Here, Oy is the minimum value of the FCP ((t), a1 > 0 and
0 < p < 1 denote parameters, and T;; is the settling time for
the ijth element e;;(t) of the error.
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Fig. 4. The trajectories of the unknown complex number x(t) = z1(t) +
z2(t)i in Example 1.
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Fig. 5. The trajectories of error in Example 1.

V. NUMERICAL EXPERIMENTS

In this section, two experiments are provided to verify the
fixed-time convergence and the adaptiveness of the proposed
FA-ZNN model.

A first-order TVCV-LMI problem (6) is considered in
following experiments, which can be described as:

(sin(t) + i)x(t) < —1 4 cos(t)i. (28)

Here, (t) = x1(t) + 22(t)i is the unknown complex number
to be solved, and i is the imaginary unit.

We denote X (t) by the real representation of z(t) = x4 (t)+
22(t)i. By Definition 1, we can transform (28) into:

sin(t) -1 .
1 sin(t)

-1 —cos(t)

29
cos(t) -1 @

FCP
45 1

35 1
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Fig. 6. The trajectories of FCP in Example 2.

A. Fixed-time Convergence

Example 1 In this example, we will demonstrate the fixed-
time convergence of the proposed model. The EAF (17) and
other three activation functions (LAF (18), PAF (19), and SAF
(20)) will also be used in this example. We set the common
parameters as a1 = as = ag = a4 = 1,p = 0.5. Based on
Theorem 2, we can obtain that:

T(X(0)) < —

alOl
L (30)
1x1’

~ 1.

IN

)

With EAF (17), we show the trajectories of x(t) in Fig. 4.
Here, t1(t) and t5(t) denote the theoretical solutions of x1(t)
and x5(t) respectively. With other three activation functions,
we also show the trajectories of error in Fig. 5. It is obvious
that, with (17), the error converged within 1 seconds, which
verify the theoretical results further. We can also see from the
figure that FP-ZNN model (16) with EAF (17) converged faster
that FP-ZNN model (16) with other three activation functions

B. Adaptiveness

Example 2 Under the control of FP-ZNN model (16) with
EAF (17), the trajectories of FCP are shown in Fig. 6. As
the error decreases, the FCP (16) can dynamically adjust
its convergence, which is more intelligent than the traditional
ZNN model. The convergence parameters in traditional ZNN
models are usually fixed and cannot be adjusted.

VI. CONCLUSION

In this study, we proposed a novel FP-ZNN model to solve
the TVCV-LMI problem. We demonstrated that the proposed
FP-ZNN model is adaptive and fixed-time convergent. To-
gether with detailed theoretical analysis, numerical experi-
ments verified the superior features further. This study, as a
novel approach, provides a elegant solution to the TVCV-LMI



problem. However, the FP-ZNN models still have limitations.
Compared with the traditional ZNN models, the introduction
of fuzzy logic system brings a great computational burden.
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