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ABSTRACT 

Localization is a vital aspect of many autonomous mobile robots. Accurate tracking especially 

indoors is key for the next generation of smart factories, automated workflows, and efficient supply 

chains. The integration of 5G networks within industrial settings offers the promise of high 

connectivity, yet challenges persist in achieving higher accuracy. This paper introduces the Spatially 

Aware Time Difference of Arrival (SA-TDoA) approach, designed to harness the dense network 

topology of 5G New Radio (NR) for advanced indoor localization. Departing from conventional 

TDoA methods that predominantly rely on Line-of-Sight (LoS) measurements, SA-TDoA 

incorporates an intelligent anchor selection mechanism. This mechanism evaluates both LoS and 

Non-Line-of-Sight (NLoS) signal paths, considering the relative spatial positioning of user 

equipment (UE) as the robot to determine the most precise location estimations. Our simulation 

results, conducted in a representative industrial setting, demonstrate a 33% reduction in error and a 

24% increase in robustness for estimation error in 90% and 95% of UE positions respectively 

compared to conventional LoS methods. 

1.  RESEARCH OBJECTIVE 

In ultra-dense 5G and beyond cellular networks, particularly in indoor environments, the deployment of 

multiple low-power small-cell gNBs is a strategic choice driven by the need to enhance capacity and coverage. 

Higher frequencies are used to provide the extra bandwidth that these UE-dense networks require. Choosing 

mmWave/ THz bands shrinks each cell's coverage while boosting its ability to serve a dense population of mobile 

and stationary Internet of Things (IoT) devices, such as robots and sensors. This scenario typically results in a high 

density of gNBs, providing different anchor sets for UE localization. Using this as a leverage, in this paper, we 

focus on selecting the most effective anchor set from the existing, uniformly installed gNBs within the UE’s 

reception range. Our methodology revolves around determining the best anchor set for localization by analysing 

the distribution of different anchor set errors. According to the TDoA Cramér-Rao Lower Bound (CRLB) 

calculations presented in [1], the factors affecting the error variance of a TDoA estimator include the variance of 

measurement errors and the relative positions of UE with respect to each base station (gNB) in the anchor set. As 

a result, both Non-Line-of-Sight (NLoS) measurements and the geometric configuration of UE and gNB can 

significantly influence the estimation error. This study introduces a mechanism to ascertain whether NLoS 

conditions or relative positioning contributes more significantly to the error. This approach recognizes that relying 

solely on LoS measurements might not always yield the most accurate localization results. There are specific 

instances where the spatial configuration of the anchor set relative to the UE’s position can lead to situations where 

NLoS measurements, or a combination of LoS and NLoS measurements, could result in lower localization error. 

Therefore, our strategy involves a nuanced selection process where the anchor set is chosen based on a 

comprehensive assessment of measurement error distribution, influenced by the UE’s location and the spatial 

arrangement of the gNBs. By adopting this methodology, we aim to enhance the accuracy and reliability of UE 

localization in dense gNB environments, particularly in indoor settings where traditional approaches may fall short. 

2.  METHODOLOGY 

The anchor selection algorithm presented in this study aims to refine TDoA estimation accuracy by introducing 

a dynamic selection process. Utilizing an offline analysis, the method aims to determine the adequacy of the LoS 

anchor-set based on the geometric configuration of UE and gNBs within this set. If the analysis indicates a potential 

for high estimation error, an alternative anchor set may be recommended to enhance accuracy. This algorithm 

procedure is as follows: 

1) Offline Mode: Adequate UE measurement data across various positions is collated. This data is paired with 

the optimal anchor set identified through an exhaustive search and then used to train an LSTM deep-learning 

network. The network’s objective is to associate each measurement set with a defined ’proximity zone’ within 

the indoor area, segmented into 10m × 10m zones for a close approximation of the UE’s actual position. A 

’success table’ is maintained to record the frequency of each anchor set being the best choice for specific 

zones. 

2) Online Mode: Utilizing the LSTM model trained in the offline mode, live UE measurements are assigned to 

a proximity zone. LoS measurements are discerned by their significantly lower variance compared to NLoS 

measurements. The algorithm selects the LoS anchor set based on the ’success table’ data for that zone and its 

adjacent areas. If the LoS set is deemed suboptimal (i.e. no success rate was recorded for this anchor-set), the 
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algorithm explores neighbouring anchor sets, potentially incorporating a mix of LoS/NLoS anchors, to enhance 

positioning. Should these alternatives also prove unsatisfactory, the set with the highest success rate, regardless 

of LoS status, is chosen for the final estimation. 

3.  RESULTS 

Our simulation environment, detailed in MATLAB, constructs a 5G network with seven uniformly placed 

gNBs within an indoor setting (InF) explained in detail in [2]. For each simulation iteration, the UE’s position is 

randomly generated. During these runs, Positioning Reference Signals (PRS) and dummy Physical Downlink 

Shared Channel (PDSCH) data are created and allocated to the resource grid. The UE then receives these signals, 

which have been modified by the channel characteristics. Subsequently, sample delays are deduced, and the 

Relative Standard Time Differences (RSTDs) are measured. These RSTDs are then conveyed to the Location 

Management Function (LMF) to facilitate the position estimation process. In the offline phase of the SA- TDoA 

algorithm, the indoor space—measuring 120m × 50m meters as determined by [2]—is segmented into 60 zones. 

An LSTM network is trained to categorize UE measurements into these zones, identifying the optimal anchor set 

through exhaustive search, and compiling a success table for each anchor set across all zones. The online mode 

operates as previously described. Figure1 provides a comparative analysis of localization errors derived from three 

distinct anchor selection strategies. Among these, the 'Best' anchor-set serves as a benchmark, identified through 

exhaustive search among all possible anchor sets estimation error and therefore impractical. The figure contrasts 

the combined LoS/NLoS scenario with outcomes from the 'LoS' and 'SA-TDoA' strategies. Notably, the SA-TDoA 

method demonstrates superior performance, maintaining localization error below 5.17 meters for 90% of User 

Equipment (UE) locations, in stark contrast to the LoS strategy's less effective 7.8 meters threshold. This 33% 

reduction in error underlines the critical advantage of accounting for the relative positions of anchor sets and UEs. 

The analysis underscores SA-TDoA's potential to significantly enhance localization accuracy, offering valuable 

insights for the development of more reliable positioning systems. 

 

 

 

 

 

 

 

 

 

4. CONTRIBUTIONS 

This study emphasizes the interplay between network topology and channel effects in indoor positioning. The 

contributions are manifold: 

▪ We introduce a novel spatially aware TDoA-based localization algorithm by examining the 

geographical configuration of the network, pinpointing scenarios where Line-of-Sight (LoS) anchor 

sets are inadequate. 

▪ We conduct a detailed, zone-wise examination of the indoor area to determine the most suitable anchor 

sets for each specific zone. 

Integrating these aspects, the spatially aware-time Difference of Arrival (SA-TDoA) algorithm is developed. 

This algorithm detects when LoS anchor sets fall short and suggests alternative anchor sets that ensure more precise 

localization. 
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Figure1. demonstrates the CDF of localization error 
based on three different anchor selection strategies. 
The “Best” anchor-set which is determined through an 
exhaustive search among all possible anchor-sets and 
is only mentioned as a benchmark. The “LoS” anchor-
set and the so-called “SA-TDoA” anchor-set.  


