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Abstract 

Euler angles are of high importance for robots with 3D motions including legged, 

humanoid, aerial (as described in [1]), and marine robots. These angles can be obtained using 

data from IMUs, consisting of different sensors. In this paper, roll and pitch angles will be 

obtained using a complementary filter which fuses data from an accelerometer and a 

gyroscope. Yaw angle is calculated based on the obtained roll and pitch angles and data from 

a magnetometer (compass). Since one of the sensors can experience noise, a novel real-time 

factor is provided to measure the accuracy of obtained angles and detect sensor failures. 

Different studies have evaluated and validated Euler angles, but none provide real-time 

capabilities except for [2]. It devised a method that utilises seven approaches to calculate the 

Euler angles, each using a different subset of the six accelerometer and magnetometer 

measurement components. This method improves fault tolerance and sensor/IMU failure 

detection through diverse redundancy. However, this study did not offer a method to 

compare the data separately obtained from the accelerometer and magnetometer. 

Additionally, it did not utilise a gyroscope which is typically a robust sensor against vibration 

noise. The current work introduces a real-time factor based on the data separately obtained 

from a magnetometer and a set of accelerometer and gyroscope to indicate the error of the 

obtained Euler angles for the subset of 3-2-1. 

Ideally, Euler angles can be obtained using a 3-2-1 rotation matrix (yaw-pitch-roll which is 

aerospace standard sequence [2]) and the gravity components reported by an accelerometer, 

as shown below: 

    
(1) 𝑹𝒊

𝒃 = 𝑹𝒛(𝜓) 𝑹𝒚′(𝜃) 𝑹𝒙′′(𝜙) = [

𝐶𝜓 𝐶𝜃 𝐶𝜓 𝑆𝜙 𝑆𝜃  −  𝐶𝜙 𝑆𝜓 𝑆𝜙 𝑆𝜓 +  𝐶𝜙 𝐶𝜓 𝑆𝜃

𝐶𝜃 𝑆𝜓 𝐶𝜙 𝐶𝜓 +  𝑆𝜓 𝑆𝜙 𝑆𝜃 𝐶𝜙 𝑆𝜓 𝑆𝜃  − 𝐶𝜓 𝑆𝜙 

− 𝑆𝜃 𝐶𝜃 𝑆𝜙 𝐶𝜙 𝐶𝜃

] 

 

(2) 
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(3) ⇨ 𝜙𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 = arctan

𝑔𝑦𝑏

𝑔𝑧𝑏
 

 
(4) ⇨ 𝜃𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 = sin−1(
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2

) 

Where 𝜙, 𝜃, 𝜓 represent roll, pitch and yaw angels which are rotations around the 𝒙′′, 𝒚′ 

and 𝒛 axes, respectively. 𝑹𝒊
𝒃 is a rotation matrix that transforms the expression of a vector in 

the inertial frame to the body frame (without rotating the vector). Vectors [𝑔𝑥𝑏 𝑔𝑦𝑏 𝑔𝑧𝑏]𝑇 

and [0 0 𝑔 = 9.8]𝑇  are gravity vectors expressed in the body and inertial frames, 

respectively.  

Additionally, another relation exists between the vector of gravity expressed in the body 

and inertial frame. 

 

(5) [
0 
0
𝑔

] = 𝑹𝒊
𝒃  [

𝑔𝑥𝑏

𝑔𝑦𝑏
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] 

From the first and second line of this equation, tan 𝜓 can be obtained as: 

 
(6) tan 𝜓𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 =

−𝑔𝑧𝑏 cos 𝜙 sin 𝜃 − 𝑔𝑦𝑏 sin 𝜙 sin 𝜃 − 𝑔𝑥𝑏 cos 𝜃

𝑔𝑧𝑏  sin 𝜙 −  𝑔𝑦𝑏 cos 𝜙
 

 
(7) tan 𝜓𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 =

𝑔𝑧𝑏  sin 𝜙 −  𝑔𝑦𝑏 cos 𝜙

𝑔𝑧𝑏 cos 𝜙 sin 𝜃 + 𝑔𝑦𝑏 sin 𝜙 sin 𝜃 + 𝑔𝑥𝑏 cos 𝜃
 

According to equations 6 and 7, tan 𝜓𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 =
−1

tan 𝜓𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟
, which is a 

contradictory result. Therefore, 𝜓 of the rotation sequence of 3-2-1 cannot be calculated just 

using an accelerometer. 

However, in most applications, there are some unmodelled vibrations and disturbances 

which significantly affect accelerometers. Fig.1, illustrates the noise on an accelerometer 

mounted on a quadrotor with motors on (typical brushless motors on quadrotors can rotate 

up to 11000 RPM).  

 

Fig. 1. Raw data of accelerometer ADXL345 under vibration noise of the quadrotor motors 



Typically, gyroscopes are more robust against vibration noises than accelerometers. 

Gyroscopes report the current angular speed as [𝑝 𝑞 𝑟]𝑇which is the vector of the angular 

speed expressed in the body frame. The relation between this velocity and the rate of change 

of Euler angles is as follows: 

[
𝑝
𝑞
𝑟

] =  𝐑𝒊
𝒃𝑇

( �̇�𝒌 +  �̇� 𝒋′ +  �̇� 𝒊′′) = 𝐑𝒊
𝒃𝑇

(�̇� [
0
0
1

] +  𝑹𝒁(𝜓) �̇� [
0
1
0

] + 𝑹𝒁(𝜓) 𝑹𝒀(𝜃) �̇� [
1
0
0

]) 

 

(8) 

⇨ [

�̇�

 �̇�
 �̇�

] = [

  1 𝑠𝑖𝑛𝜙 𝑡𝑎𝑛𝜃 𝑐𝑜𝑠𝜙 𝑡𝑎𝑛𝜃  
0 𝑐𝑜𝑠 𝜙 − 𝑠𝑖𝑛𝜙
 0  𝑠𝑖𝑛𝜙 𝑠𝑒𝑐𝜃 𝑠𝑒𝑐𝜃 𝑐𝑜𝑠𝜙

] [
𝑝
𝑞
𝑟

] 

 

(9) 

According to equation 9, if 𝜙 and 𝜃 of the n-1 th loop are known, then �̇�, �̇� and �̇� of the 

nth loop can be obtained based on the raw data (𝑝,𝑞 and 𝑟) measured by the gyroscope at 

the nth loop.  

However, integrating the velocity of Euler angles with respect to time results in large drift 

errors as shown in Fig.2. 

 

Fig. 2. Drift error of angle 𝜙 and 𝜃 of gyroscope L3G4200D in a stationary state 

To use the advantage of both the accelerometer (removing drift errors) and gyroscope 

(robustness against vibration noises), the complementary filter (discussed in [3]) is used in 

what follows: 

(10) 𝜙𝐶𝑜𝑚𝑝(𝑛) = (1 − 𝛼)(𝜙𝐶𝑜𝑚𝑝(𝑛−1) + �̇�𝑔𝑦𝑟𝑜 𝑑𝑡) + 𝛼 𝜙𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 

(11) 𝜃𝐶𝑜𝑚𝑝(𝑛) = (1 − 𝛼)(𝜃𝐶𝑜𝑚𝑝(𝑛−1) + �̇�𝑔𝑦𝑟𝑜 𝑑𝑡) + 𝛼 𝜃𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 

Where 𝜙𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟  is the 𝜙  angle (roll) calculated via equation 3 using the 

accelerometer, and �̇�𝑔𝑦𝑟𝑜 is the angular velocity of 𝜙 angle obtained according to equation 9 

using the output of the gyroscope. Additionally, the parameter 𝑑𝑡  is the time between 

sampling n and n-1, 𝜙𝐶𝑜𝑚𝑝(𝑛) is the roll angle calculated by the complementary filter in the 



nth loop. Parameter 𝛼 is the accelerometer coefficient, normally chosen as a value between 

0.01 and 0.07. It indicates a reliance of 1% to 7% on the accelerometer (using equation 3) and 

99% to 93% reliance on the sum of the previous angle and integration of the gyroscope 

velocity measured at the current loop. It can be mathematically proven that if the gyroscope 

and accelerometer remain stationary after experiencing some movements, the 

complementary angle tends to converge to the angle obtained by the accelerometer, which 

is the accurate value in stationary situations. Similarly, the same procedure applies for 𝜃. 

So far, angles 𝜙 and 𝜃 have been obtained. Now, the angle 𝜓 (yaw) can be calculated using 

a compass. The magnetic field of the Earth is a 3D vector. Vector [𝑀𝑥𝑏 𝑀𝑦𝑏 𝑀𝑧𝑏]𝑇 is the 

normalised magnetic field expressed in the body frame measured by the compass. Vector 

[𝑀𝑥𝑖 𝑀𝑦𝑖 𝑀𝑧𝑖]𝑇 is the normalised magnetic field expressed in the inertial frame measured 

by the compass when all the Eulerian angles are zero. The reason for using normalised vectors 

is that the magnitude of the magnetic field of the Earth can vary at different altitudes. 

 

 

 

 

(12) 

 [

𝑀𝑥𝑖

𝑀𝑦𝑖

𝑀𝑧𝑖
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𝒃  [
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𝑀𝑥𝑖

𝑀𝑦𝑖

𝑀𝑧𝑖
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= [

 𝑀𝑧𝑏(𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜓 +  𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜃)  − 𝑀𝑦𝑏(𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛𝜓 −  𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜃)  +  𝑀𝑥𝑏 𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠𝜃)

− 𝑀𝑧𝑏(𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛𝜙 − 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛 𝜃) + 𝑀𝑦𝑏(𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜓  +  𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛 𝜃) + 𝑀𝑥𝑏𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜓

𝑀𝑧𝑏 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃  +  𝑀𝑦𝑏 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜙 −  𝑀𝑥𝑏 𝑠𝑖𝑛 𝜃 

] 

Therefore, 𝜓 can be obtained based on 𝜙𝐶𝑜𝑚𝑝 and 𝜃𝐶𝑜𝑚𝑝 calculated in equations 10 and 

11, respectively, as follows: 

 
(13) 𝑐𝑜𝑠𝜓 =

𝑀𝑦𝑖(𝑀𝑧𝑏𝑠𝑖𝑛𝜙 −  𝑀𝑦𝑏 𝑐𝑜𝑠 𝜙) − 𝑀𝑥𝑖(𝑀𝑧𝑏 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜃 +  𝑀𝑦𝑏 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜃 +  𝑀𝑥𝑏𝑐𝑜𝑠𝜃)

𝐴
 

 
(14) 

 
𝑠𝑖𝑛𝜓 =

𝑀𝑥𝑖(−𝑀𝑧𝑏𝑠𝑖𝑛𝜙 + 𝑀𝑦𝑏 𝑐𝑜𝑠 𝜙) − 𝑀𝑦𝑖(𝑀𝑧𝑏𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃 + 𝑀𝑦𝑏𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜃 + 𝑀𝑥𝑏𝑐𝑜𝑠𝜃)

𝐴
 

Where 𝐴 is: 
 

 

(15) 

𝐴 = −(𝑀𝑧𝑏𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃 + 𝑀𝑦𝑏𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜃 + 𝑀𝑥𝑏𝑐𝑜𝑠𝜃)(𝑀𝑧𝑏 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜃 +  𝑀𝑦𝑏  𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜃

+  𝑀𝑥𝑏𝑐𝑜𝑠𝜃) + (𝑀𝑧𝑏𝑠𝑖𝑛𝜙 −  𝑀𝑦𝑏 𝑐𝑜𝑠 𝜙)(−𝑀𝑧𝑏𝑠𝑖𝑛𝜙 + 𝑀𝑦𝑏 𝑐𝑜𝑠 𝜙) 

Therefore, 𝜓 can be calculated as shown in equation 16. It can be called 𝜓𝑚𝑎𝑔_𝑐𝑜𝑚𝑝 since 

it is obtained using the data of the magnetometer and complimentary filter (gyroscope and 

accelerometer). 

(16) 𝜓𝑚𝑎𝑔_𝑐𝑜𝑚𝑝 = 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛𝜓, 𝑐𝑜𝑠𝜓) 

From the third line of equation 12, in an ideal situation where 𝜙 and 𝜃 are obtained 100% 

accurately, 𝑀𝑧𝑖  should be equal to 𝑀𝑧𝑏 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃  +  𝑀𝑦𝑏 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜙 −  𝑀𝑥𝑏 𝑠𝑖𝑛 𝜃 . 

Therefore, the difference between them can be used as an indication of error: 



 

 
(17) 𝐸 = |𝑀𝑧𝑖 − (𝑀𝑧𝑏 𝑐𝑜𝑠 𝜙𝐶𝑜𝑚𝑝 𝑐𝑜𝑠 𝜃𝐶𝑜𝑚𝑝  +  𝑀𝑦𝑏 𝑐𝑜𝑠 𝜃𝐶𝑜𝑚𝑝 𝑠𝑖𝑛 𝜙𝐶𝑜𝑚𝑝 −  𝑀𝑥𝑏 𝑠𝑖𝑛 𝜃𝐶𝑜𝑚𝑝)| 

The value of 𝐸 calculated in equation 17 can be used in real-time to measure the accuracy 

of the calculations while the system (robot) is operational and in motion. If its value exceeds 

a certain threshold, it can trigger a calibration or sensor failure alarm. A beneficial feature of 

this factor is that it is based on the data separately obtained from a magnetometer and a set 

of accelerometer and gyroscope. Since, in this factor, the terms 𝑀𝑥𝑏, 𝑀𝑦𝑏, 𝑀𝑧𝑏 are obtained 

without using the accelerometer and gyroscope, while 𝜙𝐶𝑜𝑚𝑝 and 𝜃𝐶𝑜𝑚𝑝 are obtained from 

the set of accelerometer and gyroscope without using the magnetometer. 

In case the value of 𝐸 exceeds a specific threshold, the value of the coefficient 𝛼 can be 

adjusted within it in its normal range of [0.01, 0.07] as an initial solution. If the value of 𝐸 

continues to surpass the threshold, an alarm indicating sensor failure can be triggered.  

It is noteworthy that the factor 𝐸 can be used besides the real-time method mentioned in 

[2] to detect inaccuracies in the calculated angles and sensor failures. 

Note: If the X axis of the inertial frame is towards the South and Z axis is perpendicular to 

the ground surface, the magnetic field expressed in the inertial frame is 

[𝑀𝑒 𝑐𝑜𝑠 𝛼 0 𝑀𝑒 sin 𝛼]𝑇 . Where α is the inclination angle of the Earth's magnetic field and 

𝑀𝑒 is the magnitude of the Earth's magnetic field at the current point of measurement. 
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