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Objective: 

We focus on distributed multi-autonomous system approach that enables real-time decision-making and knowledge 

sharing to minimize energy consumption and improve agility in transport operations, contributing to the aim of 

achieving net zero emissions in the transport sector. Temporal Event-Triggered Federated Learning threshold adds 

additional reliability to our communication strategy and contributes to our multi-robot navigation system's overall 

efficiency and accuracy. In this context, robots collaboratively acquire a shared collision avoidance model, utilizing 

local model updates communicated to a central server from the affected unit. Upon receiving updates, the central server 

aggregates information, adapting the global path planning model and broadcasting it back to all units. This ensures that 

all units benefit from collective knowledge and adaptations to navigate toward a destination while avoiding obstacles 

in object-restricted areas utilizing resources efficiently as shown below. 

 
Our research aims to address the challenges of energy consumption and computational overhead in autonomous 

system by developing intelligent decision-making algorithms. Specifically, we seek to achieve the following 

objectives: 

1. Develop a framework for knowledge aggregation among autonomous system to enable real-time information 

sharing. 

2. Optimize energy usage and reduce computational overhead through intelligent decision-making algorithms. 

3. Evaluate the performance and effectiveness of the proposed approach in simulation and real-world scenarios. 

Methodology: 

In our proposed approach using Proximal Policy Optimization (PPO) with temporal discounted rewards and 

communication-triggered Federated Learning for adaptive collision avoidance in a multi-robot system, the 

adjustment of the policy when the cumulative negative reward reaches its closest to obstacles with time step involves 

the learning process within the PPO algorithm. 

Here's a high-level overview of how the cumulative negative reward can impact policy adjustment in the context of 

PPO: 

 

St+1∼P(⋅∣St,At)  
𝜋𝜃( 𝑎 ∣ 𝑠 ) = 𝑃( 𝐴𝑡 = 𝑎 ∣ 𝑆𝑡 = 𝑠, 𝜃 ) 

𝐺𝑡 = ∑ 𝛾𝑘𝑅𝑡+𝑘+1 × 𝑑𝑡  

∞

𝑘=0

 

𝑅𝑡 = −𝛼𝑡 ⋅ 𝑑𝑡  

where dt is the proximity to obstacles,  

and 𝛼𝑡   is a scaling factor at time t. 

St: State at time step t. 

At: Action taken at time step t. 

πθ(a∣s): Policy function parameterized by θ, 

representing the probability of acting a given state s. 

Rt: Immediate reward at time step t. 

Gt: Cumulative discounted reward at time step t. 

γ: Discount factor. 

L(θ): PPO objective function. 

δt: Surrogate advantage function 
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𝐿(𝜃) = E𝑡 [min (
𝜋𝜃( 𝐴𝑡∣𝑆𝑡 )

𝜋𝜃old( 𝐴𝑡∣𝑆𝑡 )
/// ⋅ 𝛿𝑡, clip (1 − 𝜖, 1 + 𝜖,

𝜋𝜃( 𝐴𝑡∣𝑆𝑡 )

𝜋𝜃old( 𝐴𝑡∣𝑆𝑡 )
/// ⋅ 𝛿𝑡))] . max (−1, −𝑘. 𝑑𝑡)  

𝛿𝑡 = 𝑅𝑡 + 𝛾 ⋅ 𝑉𝜃(𝑆𝑡 + 1) − 𝑉𝜃(𝑆𝑡) 

𝑉𝜃(𝑆𝑡) ← E𝑡[𝑅𝑡 + 1 + 𝛾 ⋅ 𝑉𝜃(𝑆𝑡 + 1)] 

𝜃𝑖 ← FederatedUpdate(𝜃𝑖, {𝜃𝑗}𝑗 ≠ 𝑖) 
Where 𝜃𝑖  is the local policy parameters of agent i, and {𝜃𝑗} j≠i represents policies of other agents. 

If Gt ≤Threshold, then trigger federated learning event. By incorporating the cumulative negative reward into the PPO 

learning process, the policy of the robot is adjusted to navigate away from obstacles, and communication events are 

triggered when the robot encounters situations that warrant updates to the shared knowledge base. This helps in 

achieving adaptive collision avoidance in the multi-robot system. 

Training Process: 

• Optimize θ using PPO for individual agents. 

• Utilizing negative discount awards for learning obstacle avoidance. 

• Trigger FL events based on cumulative discounted rewards. 
The policy adjustment is typically performed through gradient descent, where the gradients of the policy with respect 

to the negative reward are used to update the policy parameters. 

Results: 

 Evaluation results using DRL embedded PPO and DQN training strategies show success rates for path navigation 

and average completion times, with and without knowledge sharing, respectively, via event-triggered FL. 

Figure 2: Average Completion Time on each model. 

Significance: 

This study holds significant implications for the advancement of autonomous technology and its broader 
impact on society: 

1. Enhanced Efficiency: By optimizing energy usage and reducing computational overhead, our approach 
can improve the overall efficiency of autonomous system, leading to cost savings and environmental 
benefits. 

2. Improved Safety: Real-time information sharing among autonomous system can enhance safety by 
enabling proactive responses to changing road conditions and potential hazards. 

3. Scalability: The developed framework can be scaled to accommodate a growing network of AVs, 
paving the way for widespread adoption and integration into smart transportation and connected 
systems.  

4. Technological Innovation: Our research contributes to the ongoing innovation in ground autonomous 
vehicle technology, driving forward the development of smarter and more sustainable transportation 
solutions. Overall, this study represents a crucial step towards realizing the full potential of ground 
autonomous vehicles and their role in shaping the future of transportation. 
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DQN 85% 86% 92% 85% 89% 0.874% 

Temporal-

PPO 

98% 95% 96.9% 98% 94% 0.965% 

Figure 1: Success rate by comparing the accuracy. 

 Fig. 1 illustrates the evaluation results in the simulated 
environment shows the success rate for each model, the 
task was performed 10 times and the results average over 
10 runs for 5 agents. The avg performance of models 
trained with Deep Q-network is the lowest. Fig. 2 shows the 
average completion time of each run with knowledge 
sharing strategy for intelligent navigation using Temporal-
PPO. 


